Modelling of precision laser spectroscopy experiments

Dimitar Bakalov,

Laboratory of mathematical modelling, INRNE, Sofia

Methodology

- 1. High accuracy theoretical calculations of spectra
- 2. High precision laser spectroscopy measurement
- 3. Juxtaposition of theory with experiment

→ (improved) values of fundamental particle characteristics:

- particle masses (m_p/m_e, m_{p-}/m_e, m_{$\pi\pm$}/m_e)
- magnetic moments (μ_{p})
- charge distribution (proton r.m.s. and Zemach radii)
- Ry, α , $d\alpha/dt$, etc.

Simple atomic systems

- Strong requirements to the accuracy of theory (10⁻¹⁰, 10⁻¹¹,?) achievable in simple 2 or 3 body systems only!
 → Restricted choice of atomic systems:
- Hydrogen atom
- Positronium e^+e^- and Muonium μ^+e^-
- Hydrogen molecular ions H₂⁺, HD⁺, D₂⁺
- Exotic hydrogen $p^+\mu^-$, $p^+\pi^-$,...
- Exotic helium He⁺⁺e⁻p⁻, He⁺⁺e⁻ π ⁻, etc.

The 3 experimental projects of interest

• ASACUSA (CERN)

laser spectroscopy of antiprotonic and pionic helium

 \rightarrow antiproton magnetic moment, $m_{p_{-}}/m_{e}$, $m_{\pi_{-}}/m_{e} \rightarrow CPT$

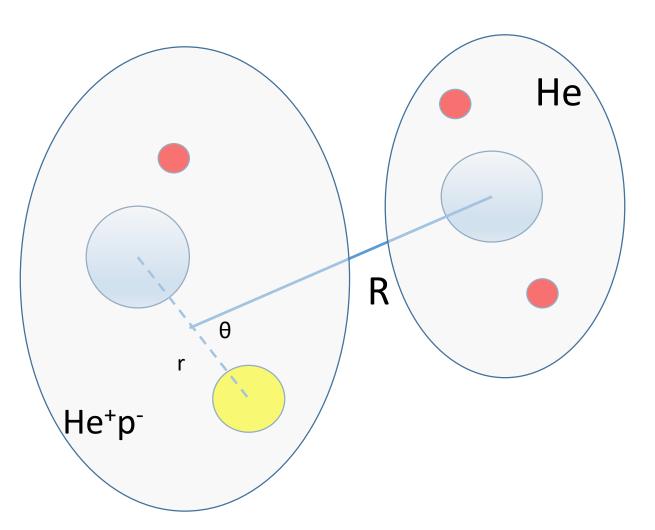
• FAMU (INFN+RIKEN-RAL)

laser spectroscopy of muonic hydrogen

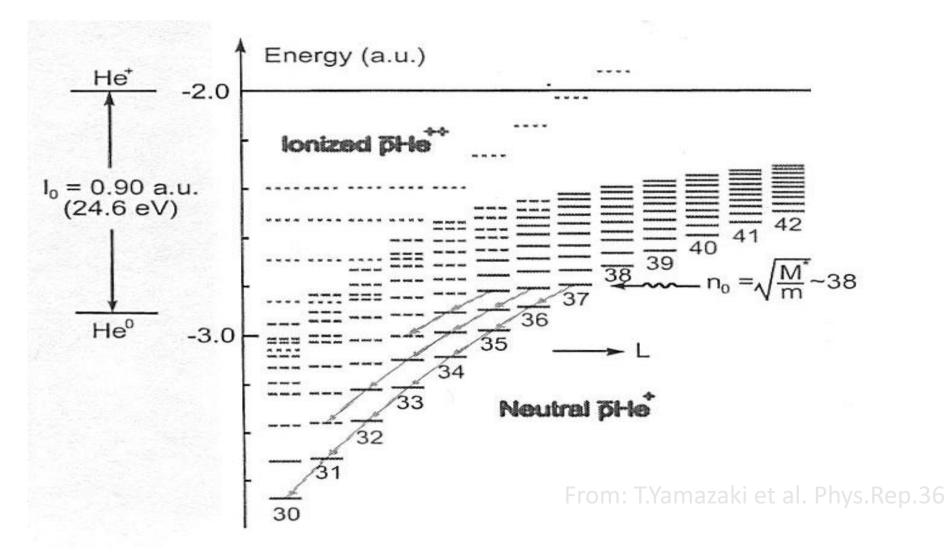
 \rightarrow muonic Zemach radius \rightarrow proton size puzzle

• PREMOL (University of Dusseldorf)

laser spectroscopy of trapped H2+, HD+ and D2+

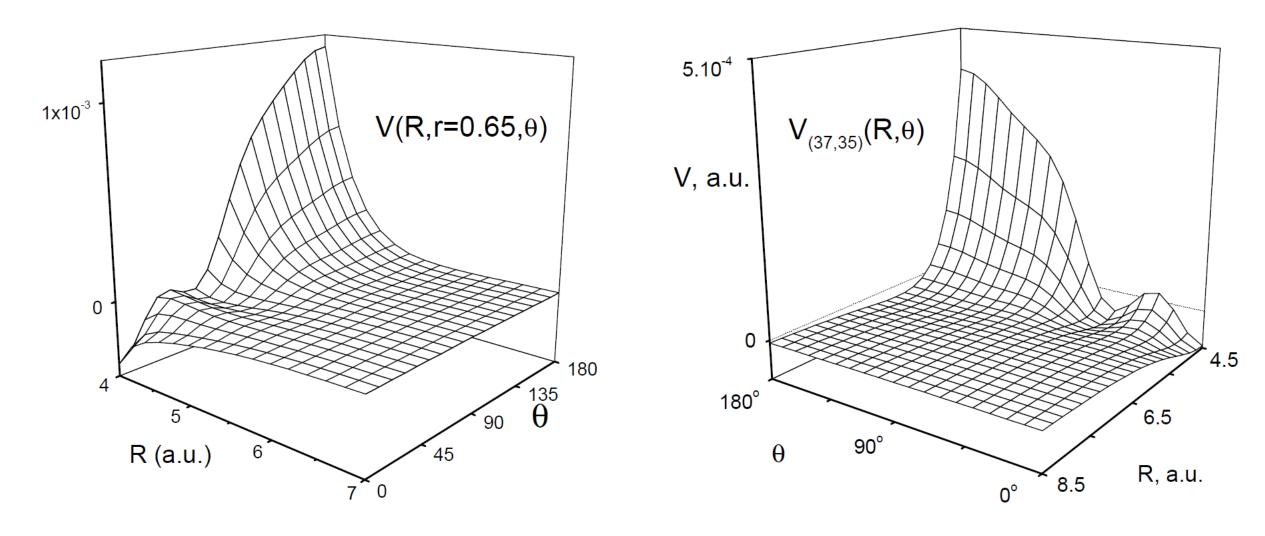

 $\rightarrow m_p/m_e, m_d/m_e, \dots \rightarrow molecular clocks, d\alpha/dt$

Modelling tasks


- 1. Evaluation of the systematic effects
 - External field effects (Zeeman, a.c. and d.c.Stark)
 - Density shift and broadening
- 2. Minimization of the systematic effects
 - Optimal selection of appropriate spectral lines
- 3. Optimization of the experimental conditions
 - Search for maximal efficiency of the set-up

ASACUSA (1): exotic helium atom

- Exotic helium: one electron \bullet in He is replaced by p⁻ or $\pi^- \bigcirc$
- Formed when antiproton (or pion) beam is stopped in He gas.
- Very accurate theory for <u>isolated</u> He⁺p⁻ (Korobov,...)
- Main systematic effect: interaction with neighbor He atoms (density shift & broad.)

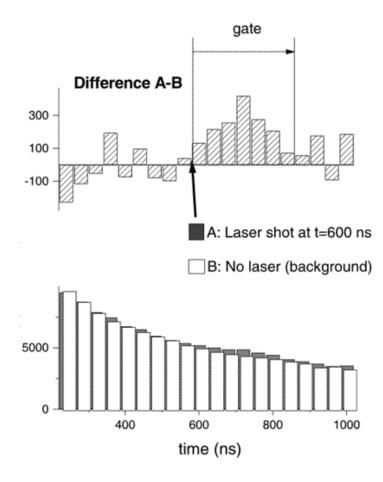

ASACUSA (2): isolated atom energy spectrum

ASACUSA (3): Density shift & broadening

- Depends on the interaction of He⁺p⁻ with He
- In the lowest order approximation: binary potential V(R,r, θ) V(R,r, θ) = E(6-body system) – E(He⁺p-) – E(He)
- E(6-body system): calculated using Quantum chemistry methods
- 1999 calculation: V(R,r,θ) evaluated on a grid of 395 points accuracy ~10⁻³, 8 hours CPU/point (SAPT, Szalewicz, Jeziorski)
- 2019 calculation: 25000 pts grid, 1 hour/point (Przybytek, Jeziorski)
- Density effect evaluation: Semiclassical; fully QM
- Precise PES needed for E1 and 2-photon laser spectroscopy.

ASACUSA (4): The PES

FAMU (1): IR laser spectroscopy of μ^-p


- The goal: determine the proton Zemach radius R_z
- Motivation: the Proton size puzzle (Pohl, 2010):

the r.m.s. proton charge radii measured in ordinary and muonic hydrogen differ by 7σ ; necessary to compare the Zemach radii

• Method: to extract R_z measure the hyperfine splitting Δe^{hfs} in (µp)_{1s}

 Δe^{hfs} [meV]=182.819[meV] - 1.301[meV/fm]R_z + 0.064[meV]

FAMU (2): The experimental method

- Muons are stopped in H_2/O_2 gas
- $(p\mu)_{1s}$ are formed
- IR laser pulses excite (pµ)_{1s}
- The time distribution of the events of muon transfer as signature of resonant excitation of F=1 spin state.
- Signal Δ : count difference in gate
- Noise σ : sq.root of counts in gate

FAMU (3): The experiment

FAMU is a "frontier" spectroscopy experiment, because

- Muonic hydrogen atoms are very rare: only 10³/second at RIKEN-RAL (standard optical spectroscopy techniques non applicable)
- Laser-induced spin-flip is a very weak M1 transition (standart detection methods not applicable)
- Pulsed IR laser at λ =6.7 nm did not exist; now have only ~2 mJ/pulse
- IR multi-pass cavity of ultra high reflectivity R>0.9995 needed

Detailed modelling of every step required to grant sufficient efficiency

FAMU: Beam and target optimization

- Slowing down and stopping of muons: multiple scattering
- Position of muon stops many <u>parameters to optimize</u>:
 - initial muon beam characteristics,
 - composition, density, temperature of the target and gas
- Optimization by Monte Carlo simulations very time consuming
- → Smooth fit to MC results, analytical optimization
- → Reliable extrapolation to unexplored materials [JINST(2016)]

Example: breakdown momentum $p_B(d,\rho)=26.6 d^{0.296}9 \rho^{0.2342} MeV/c$

FAMU: Multi-pass cavity optimization

• Need to maximize the signal-to-noise ratio Δ/σ

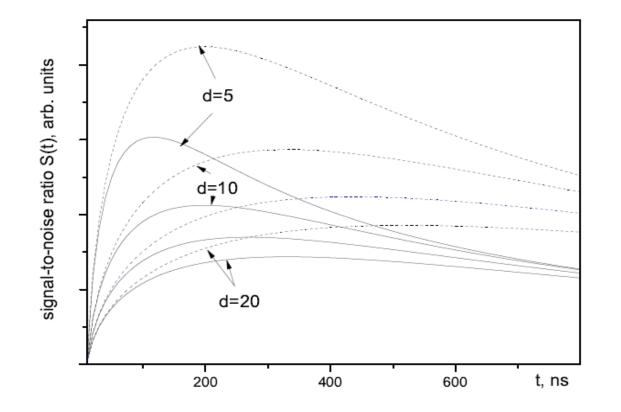
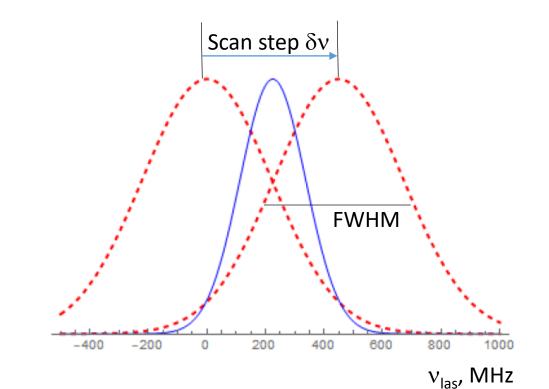


Figure 4. Dependence of the signal-to-noise ratio $S(t) = \Delta/\sigma$ (in arbitrary units) on the measurement time gate t, for a set of inter-mirror distances d = 5(5)20 cm, mirror reflectivity R = 0.998 (solid lines) or R - 0.999 (dashed lines), and laser pulse length $\tau_L = 20$ ns.


FAMU: Measurement strategy optimization

• Muons are "expensive"

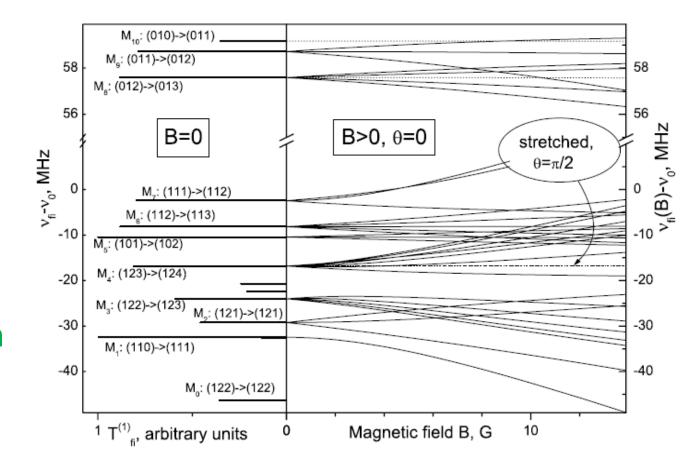
→ Minimize the beam time

• Optimal frequency step for scanning the investigate range with the tunable IR laser:

 $\delta v = FWHM . (8Log(2))^{-1/2}$

PREMOL

- High precision laser spectroscopy of trapped ions H2+,HD+,D2+
- Comparison with theory (Korobov, ...) →
 improved values of fundamental constants


To evaluate (prior to comparison): all systematic effects:

- external magnetic fields (Zeeman)
- external electric fields (a.c. & d.c. Stark)
- laser polarization effects, ...

PREMOL: Zeeman splitting

Zeeman shift (up to O(B2)) $\Delta E_z = t M B + (q + r M^2) B^2$

Selected E1 spectral lines with minimal sensitivity to external magnetic field Similar for M1, E2 and 2-photon Similar for Stark shifts

PREMOL: Homonuclear molecular ions H₂⁺,D₂⁺

Possible transitions:

- E1 (electric dipole)
- Forbidden E1
- 2-photon electric
- E2 electric quadrupole

PREMOL: Polarization effects in E2-lines

 $T^{(2)}_{M}$ – amplitudes of E2-transitions with $\Delta M=q=-2,-1,...,2$ Linear polarization circular polarization

$$\begin{aligned} |\widehat{T}^{(2)0}|^2 &= \frac{1}{4}\sin^2 2\beta \cos^2(\alpha - \theta), \\ \widehat{T}^{(2)\pm 1}|^2 &= \frac{1}{12}(1 + \sin^2(\alpha - \theta)\cos 2\beta + \cos^2(\alpha - \theta)\cos 4\beta), \\ \widehat{T}^{(2)\pm 2}|^2 &= \frac{1}{24}\sin^2 \beta \left(3 + \cos 2\beta - 2\sin^2 \beta \cos 2(\alpha - \theta)\right) \end{vmatrix}, \qquad |\widehat{T}^{(2)\pm 2}|^2 &= \frac{1}{3} \binom{\sin^4 \beta/2}{\cos^4 \beta/2} (1 \pm 2\cos \beta)^2, \end{aligned}$$

Still more complicated expressions for elliptical polarization

PREMOL: Molecular clocks

- Appropriateness for molecular clocks: spectral lines with
 - as small as possible natural width
 - lowest overall sensitivity to systematic effects.
- Successful selection of several such lines: [PRL113(2014)] systematic uncertainty 5×10⁻¹⁷
- Composite frequencies $v_c = \beta_1 v_1 + \beta_2 v_2 + ... \beta_k v_k$ systematic uncertainty 10⁻¹⁸
- Currently: completion and refinement of the selection in progress